Best L_{1}-Approximation of Bounded, Approximately Continuous Functions on [0, 1] by Nondecreasing Functions

Richard B. Darst and Robert Huotari
Colorado State University, Fort Collins, Colorado 80523, U.S.A.
Communicated by R. Bojanic
Received December 19, 1983

Abstract

Let Ω denote the closed interval $[0,1]$ and let $b A$ denote the set of all bounded, approximately continuous functions on Ω. Let $f \in b A$. It is shown that f has an (essentially) unique best L_{1}-approximation f_{1} by nondecreasing functions; f_{1} is shown to be continuous. For $1<p<\infty$, the best L_{p}-approximations f_{p} are shown to be continuous, and they are shown to converge uniformly to f_{1} as $p \rightarrow 1$. A characterization of f_{1} is given. It is also shown that if $f^{n} \in b A, 0 \leqq n<\infty$ and f^{n} converges to f^{0} in L_{1} as $n \rightarrow \infty$, then $f_{1}^{n} \rightarrow f_{1}^{0}$ in L_{1} as $n \rightarrow \infty$. © 1985 Academic Press, Inc.

1. Introduction

Let (X, A, μ) be a probability space and put $A_{p}=L_{p}(X, O, \mu)$, $1 \leqq p \leqq \infty$. Let \mathscr{B} be a sub sigma algebra of \mathscr{C} and put $B_{p}=L_{p}(X, \mathscr{B}, \mu)$, $1 \leqq p \leqq \infty$. For $1<p<\infty, A_{p}$ is a uniformly convex Banach space, so $f \in A_{\infty}$ has a unique best L_{p}-approximation f_{p} by elements of the subspace \boldsymbol{B}_{p}. Shintani and Ando [14] investigated best L_{1}-approximants. In [5] it was shown that there is a unique, well defined best best L_{∞}-approximation f_{∞} to f and f_{∞} has the Polya property: $f_{\infty}=\lim _{p \rightarrow \infty} f_{p}$. This line of investigation was continued in $[1-3,6,8]$. Generalizing, let \mathscr{M} be a sub sigma lattice of O. Then $M_{p}=L_{p}(X, \mathcal{M}, \mu)$ is a closed convex cone in A_{p} and f has a unique best approximation f_{p} in $M_{p}, 1<p<\infty$. A basic example is obtained by putting $X=\Omega, m=$ Lebesgue measure and a the Lebesgue measurable sets in Ω. Put $\mathscr{M}=\{\phi, \Omega,(a, 1],[a, 1], 0<a<1\}$; then a function g on Ω is \mathscr{H}-measurable if and only if it is nondecreasing. Henceforth, attention is restricted to this case. The Polya property fails [8, 7]: $\lim _{p \rightarrow \infty} f_{p} \doteq f_{\infty}$ need not exist. A slight modification of the example given in [7] will appear at the end for the sake of completeness; the function f in this example is continuous except at $x=\frac{1}{2}$, but f is approximately continuous at $x=\frac{1}{2}$ and constant on [$\frac{1}{2}, 1$]. However [9], if
f is quasi-continuous, the Polya property obtains. In fact, $f_{p} \rightarrow f_{\infty}$ uniformly as $p \rightarrow \infty$; moreover, if f is continuous, then f_{p} is continuous, $1<p<\infty$. Herein we will look at the corresponding Polya-one property: $\lim _{p \downarrow 1} f_{p}$, and at existence and uniqueness of best L_{1}-approximations to f in $b A$ by nondecreasing functions. The results in [9] establish that f_{∞} is a best L_{∞}-approximation to f when f is quasi-continuous. Of course, even when f is continuous there may be many best L_{∞}-approximations. The indicator function $I_{[0,1 / 2]}$ of the interval $\left[0, \frac{1}{2}\right]$ has any constant function with value between zero and one as a best L_{1}-approximation by elements of M_{1}. (These constant functions are also the best L_{1}-approximations to f by elements of B_{1} when $\mathscr{B}=\{\phi,[0,1]\}$.) One of the authors [10] established the Polya-one property for quasi-continuous functions. For f in $b A$, we will show that there is an (essentially) unique best L_{1}-approximation f_{1} to f by nondecreasing functions, that f_{1} is continuous, and that f_{p} converges uniformly to f_{1} as $p \rightarrow 1$. We will characterize f_{1}. The only ambiguity in f_{1} occurs at the endpoints zero and one, so uniqueness obtains if we specify that the nondecreasing approximations be continuous at zero and one.

We will also look at continuity of the map $f \rightarrow f_{1}$. The map $f \rightarrow f_{p}$ is uniformly continuous in $\|\cdot\|_{p}$ on bounded subsets of L_{∞} for fixed p, $1<p<\infty$. The map $f \rightarrow f_{\infty}=\lim _{p \rightarrow \infty} f_{p}$ is uniformly continuous in $\|\cdot\|_{\infty}$ on the quasi continuous functions. We will give an example (Example 2) to show that the map $f \rightarrow f_{1}$ is not uniformly continuous in $\|\cdot\|_{1}$ on $C[0,1]$. But we will show that the map $f \rightarrow f_{1}$ is continuous in $\|\cdot\|_{1}$ on the bounded approximately continuous functions.

2. Existence, Uniqueness, and Two Characterizations of f_{1}

If A is a measurable subset of Ω and I is a subinterval of Ω, the relative measure of A in I is defined by

$$
m(A, I)=m(A \cap I) / m I
$$

and the upper metric density of A at x, x in Ω, is defined by

$$
\bar{m}(A, x)=\lim _{n \rightarrow \infty} \sup _{I}\{m(A, I): I \text { is an interval, } x \in I, \text { and } m I<1 / n\} .
$$

The lower metric density $\underline{m}(A, x)$ is defined similarly, with sup replaced by inf. The metric density of A at x is $m(A, x)=\bar{m}(A, x)=\underline{m}(A, x)$, when equality holds. A function $f: \Omega \rightarrow R$ is said to be approximately continuous at x in Ω if, for any $\varepsilon>0$, the set

$$
A_{\varepsilon}=\{y:|f(y)-f(x)|<\varepsilon\}
$$

has metric density one at $x ; f$ is said to be approximately continuous on Ω if it is approximately continuous at each point in Ω.

Remark. A function f is approximately continuous at x if and only if x is a Lebesgue point of f [4, p. 38; 13, p. 168]. Reference [4] contains a nice introduction to approximately continuous functions and a rather complete set of references.

Let M consist of all functions $g: \Omega \rightarrow R$ such that g is nondecreasing, $g(0)=\inf \{g(x): x \in(0,1)\}$ and $g(1)=\sup \{g(x): x \in(0,1)\}$. We suppose $f \in b A$. For $1<p<\infty$, let f_{p} denote the unique best L_{p}-approximation to f by elements of M.

Lemma 1. Suppose $1 \leqq p$ and g is a best L_{p}-approximation to f by elements of M. Then g is continuous.

Proof. Suppose first that $g \equiv f$. Then f is nondecreasing, so f has at most discontinuities of the first kind and f is quasi-continuous; i.e., for any y in $(0,1), f$ has left and right limits at $y: f(y-)=\lim _{x \uparrow y} f(x)$ and $f(y+)=$ $\lim _{x \downarrow y} f(x)$ both exist. If $0<y<1$ and $f(y-)<f(y+)$, then f is not approximately continuous at y. Thus f is in fact continuous and the assertion of the lemma is true.

Suppose $g \not \equiv f$. First we will consider points y where $g(y) \neq f(y)$. We will only consider the case where $0<y<1$ and $f(y)-g(y)=3 \varepsilon>0$ because the other cases are similar. Let $Q \in(0,1)$. We will specify Q later. Since f is approximately continuous, there exists $\delta=\delta_{Q}>0$ such that

$$
\begin{equation*}
m([f>f(y)-\varepsilon], I)>Q \tag{1}
\end{equation*}
$$

for any interval I such that $y \in I$ and $I \subset B(y, \delta)=(y-\delta, y+\delta)$. We now suppose that $\eta=\min \{g(y+)-g(y-), \varepsilon\}>0$ and show that this supposition leads to a contradiction.

Define $\phi: \Omega \rightarrow R$ by

$$
\begin{align*}
\phi(x) & =g(x)+\eta, & & x \in(y-\delta, y) \\
& =g(y-)+\eta, & & x=y \tag{2}\\
& =g(x), & & x \notin(y-\delta, y] .
\end{align*}
$$

Let $I=(y-\delta, y]$ and $F=I \cap[f>f(y)-\varepsilon]$. Applying the mean value theorem to the function $s \mapsto s^{p}$ we have that there exists a u in $(s, s+\sigma)$ such that

$$
(s+\sigma)^{p}-s^{p}=p u^{p-1} \sigma \geqq p s^{p-1} \sigma,
$$

so, for t in F,

$$
|f(t)-g(t)|^{p}-|f(t)-\phi(t)|^{p} \geqq p|f(t)-\phi(t)|^{p-1}|\phi(t)-g(t)|
$$

whence

$$
|f(t)-\phi(t)|^{p} \leqq|f(t)-g(t)|^{p}-p|f(t)-\phi(t)|^{p-1} \eta
$$

Then

$$
\begin{equation*}
\int_{F}|f-\phi|^{p} \leqq \int_{F}|f-g|^{p}-p \eta \int_{F}|f-\phi|^{p-1} \leqq \int_{F}|f-g|^{p}-p \eta \varepsilon^{p-1} \delta Q . \tag{3}
\end{equation*}
$$

Notice also that

$$
\left||f(t)-\phi(t)|^{p}-|f(t)-g(t)|^{p}\right| \leqq p\left(2\|f\|_{\infty}\right)^{p-1}|\phi(t)-g(t)| ;
$$

thus,

$$
\begin{aligned}
\left|\int_{I-F}\right| f-\left.\phi\right|^{p}-\int_{I-F}|f-g|^{p} \mid & \leqq p\left(2\|f\|_{\infty}\right)^{p-1} \eta m(I-F) \\
& <p\left(2\|f\|_{\infty}\right)^{p-1} \eta(1-Q) \delta
\end{aligned}
$$

So, if we choose $Q \in[0,1]$ satisfying

$$
\begin{equation*}
\varepsilon^{p-1} Q>\|2 f\|_{\infty}^{p-1}(1-Q) \tag{4}
\end{equation*}
$$

we find that ϕ is a better L_{p}-approximation to f. This contradiction verifies the continuity of g at y, where $g(y) \neq f(y)$.

Suppose $g(y)=f(y)$. Then a slight variation of the above argument shows that $g(y+)-g(y)=3 \varepsilon>0$ and $g(y)-g(y-)=3 \varepsilon>0$ each lead to a contradiction, so Lemma 1 is established.

Before going on we wish to comment on the proof of Lemma 1. Looking first at the last two sentences of the proof, suppose $|g(y)-f(y)|<3 \varepsilon$; then $g(y+)-g(y) \geqq 6 \varepsilon$ and $g(y)-g(y-) \geqq 6 \varepsilon$ each lead to a contradiction. Second, note that if Q_{0} fits (4) for ε_{0}, then Q_{0} fits for $\varepsilon \geqq \varepsilon_{0}$. Also observe that if Q_{0} fits (4) for p_{0} and for 1 , then Q_{0} fits for $p \in\left[1, p_{0}\right]$. We will use these comments in the following.

Lemma 2. Given $p>1$ and $y \in[0,1]$, the family $\mathscr{F}_{p}=\left\{f_{r}: 1<t \leqq p\right\}$ is equicontinuous at y.

Proof. Referring to the proof of Lemma 1, we consider $y \in(0,1)$. Suppose that \mathscr{F}_{p} is not equicontinuous at y. Then there exist $\varepsilon>0, p_{n} \in(1, p]$, $\left|x_{n}-y\right|=\gamma_{n} \rightarrow 0$ with $\left|f_{p_{n}}\left(x_{n}\right)-f_{p_{n}}(y)\right|>8 \varepsilon$. Since $\left\{f_{p_{n}}(y)\right\}$ is a bounded
sequence, we also suppose that $\left|f_{p_{n}}(y)-\alpha\right|<\varepsilon$. Put $\eta=\varepsilon$ and let Q satisfy (4) for 1 and p. Then choose $\delta>0$ so that

$$
\begin{equation*}
m([|f-f(y)|<\varepsilon], I)>(1+Q) / 2 \tag{5}
\end{equation*}
$$

whenever $y \in I \subset B(y, \delta)$. The argument for $x_{n}<y$ is symmetric to our argument for $x_{n}>y$, so we suppose $x_{n}-y=\gamma_{n}>0$. Now compare $f(y)$ and α. If $f(y) \geqq \alpha+4 \varepsilon$, raise $f_{p_{n}}$ by ε on $(y-\delta, y)$, do not change $f_{p_{n}}$ off $\left(y-\delta, x_{n}\right)$, and maintain monotonicity. If $f(y)<\alpha+4 \varepsilon$, lower $f_{p_{n}}$ by ε on $\left(x_{n}, y+\delta\right)$, do not change f off $(y, y+\delta)$, and maintain monotonicity. Since $\gamma_{n} \rightarrow 0, \lim \inf m\left([|f-f(y)|<\varepsilon] \cap\left(x_{n}, y+\delta\right),(y, y+\delta)\right) \geqq(1+Q) / 2$. Thus, a slight variation of the proof of Lemma 1 produces a contradiction as $n \rightarrow \infty$.

Lemma 3. Let $d_{p}(f, M)=\inf \left\{\|f-h\|_{p}: h \in M\right\}$. Then $d_{p}(f, M)$ is a nondecreasing function of p and

$$
\lim _{p \downarrow 1} d_{p}(f, M)=d_{1}(f, M) .
$$

Proof. If $0<r<s$, then, for all $h \in M,\|f-h\|_{r} \leqq\|f-h\|_{s}[13$, p. 73] so $d_{p}(f, M)$ is a nondecreasing function of p.

It is clear that $d_{p}(f, M)=d_{p}\left(f, M_{f}\right)$, where $M_{f}=\left\{h \in M:\|h\|_{\infty} \leqq\right.$ $\left.\|f\|_{\infty}\right\}$. If $d_{1}(f, M)=0$, then f is nondecreasing and we are done; suppose that $d_{1}=d_{1}(f, M)>0$. Let $h_{n} \in M_{f}$ with $\left\|f-h_{n}\right\|_{1} \rightarrow d_{1}: d_{1}=$ $\lim _{n}\left\|f-h_{n}\right\|_{1} \leqq\left\|f-f_{p}\right\|_{1} \leqq\left\|f-f_{p}\right\|_{p} \leqq \lim \inf _{n}\left\|f-h_{n}\right\|_{p}$. Thus, we need to compare $\|f-h\|_{p}$ with $\|f-h\|_{1}$, where $h \in M_{f}$; put $\phi=|f-h|$. Then $H=\|f-h\|_{\infty} \leqq 2\|f\|_{\infty}=F$. If $H \leqq 1$, then $\int \phi^{p} \leqq \int \phi$ and $\|\phi\|_{p} \leqq$ $\left(\|\phi\|_{1}\right)^{1 / p}$. If $H>1$, then $\int\left(\phi^{p}-\phi\right) \leqq \int\left(H^{p}-H\right) \leqq F^{p}-F$ and

$$
\int \phi^{p} \leqq\left(F^{p}-F\right)+\|\phi\|_{1} \leqq\|\phi\|_{1}\left[1+\left(F^{p}-F\right) / d_{1}\right] .
$$

Hence, $\|\phi\|_{p} \leqq\left(\|\phi\|_{1}\right)^{1 / p}\left[1+\left(F^{p}-F\right) / d_{1}\right], \phi=f-h, h \in M_{f}$. Thus, lim inf $\left\|f-h_{n}\right\|_{p} \leqq d_{1}^{1 / p}\left[1+\left(F^{p}-F\right) / d_{1}\right]$ and Lemma 3 is established.

Lemma 4. There is a best L_{1}-approximation to f by elements of M.
Proof. Referring to Lemma 2, let \mathscr{F} denote the equicontinuous family \mathscr{F}_{2}. The fact that \mathscr{F} is uniformly bounded allows us to apply a Theorem of Helly [12, p. 221]: If $\left\{p_{n}\right\}$ is any sequence with $p_{n} \downarrow 1$, then there is a subsequence $\left\{f_{q_{n}}\right\}$ of $\left\{f_{p_{n}}\right\}$ and a function, call it $f_{1}\left(\left\{q_{n}\right\}\right)$, in M, such that $f_{q_{n}} \rightarrow f_{1}\left(\left\{q_{n}\right\}\right)$ pointwise. Then $f_{q_{n}}-f \rightarrow f_{1}\left(\left\{q_{n}\right\}\right)-f$ pointwise, so, by the Lebesgue Convergence Theorem,

$$
\left\|f_{p_{n}}-f\right\|_{1} \rightarrow\left\|f_{1}\left(\left\{q_{n}\right\}\right)-f\right\|_{1}
$$

Since, for every n,

$$
d_{1}(f, M) \leqq\left\|f_{p_{n}}-f\right\|_{1} \leqq\left\|f_{p_{n}}-f\right\|_{p_{n}},
$$

Lemma 3 implies that

$$
\left\|f_{1}\left(\left\{q_{n}\right\}\right)-f\right\|_{1}=d_{1}(f, M)
$$

so $f_{1}\left(\left\{q_{n}\right\}\right)$ is a best L_{1}-approximation to f by elements of M.
Having established existence of a best L_{1}-approximation, we turn to uniqueness. The next lemma gives four properties that a best L_{1}-approximation must possess. First, a definition: a nondecreasing continuous function g on $[0,1]$ is said to increase to the right at a point s of $[0,1)$ if $x>s$ implies $g(x)>g(s)$. Similarly, g is said to increase from the left at t in $(0,1]$ if $x<t$ implies $g(x)<g(t)$.

Lemma 5. If g is a best L_{1}-approximation to f by elements of M, then g is continuous and for any sin $[0,1)$, if g increases to the right at s, then, for any t in $(s, 1]$,

$$
\begin{equation*}
m\{[f<g] \cap[s, t]\} \leqq(t-s) / 2 ; \tag{6}
\end{equation*}
$$

for any t in $(0,1]$, if g increases from the left at t, then for any s in $[0, t)$,

$$
\begin{equation*}
m\{[f>g] \cap[s, t]\} \leqq(t-s) / 2 \tag{7}
\end{equation*}
$$

for any $\sin [0,1)$,

$$
\begin{equation*}
m\{[f>g] \cap[s, 1]\} \leqq(1-s) / 2 \tag{8}
\end{equation*}
$$

and for any t in $(0,1]$,

$$
\begin{equation*}
m\{[f<g] \cap[0, t]\} \leqq t / 2 \tag{9}
\end{equation*}
$$

Proof. If g is the best L_{1}-approximation to f by elements of M, then, by Lemma $1, g$ is continuous. Suppose condition (6) does not hold. Then there exist s and t such that $0 \leqq s<t \leqq 1$ and g increases to the right at s, but

$$
m\{[f<g] \cap[s, t]\}>(t-s) / 2 .
$$

Since $[f<g]=\bigcup_{n=1}^{\infty}[f<g-1 / n]$, there exist n^{\prime} in N and $\delta>0$ such that

$$
m\left\{\left[f<g-1 / n^{\prime}\right] \cap[s, t]\right\}>(t-s) / 2+2 \delta .
$$

For each $n>0, g-1 / n$ is continuous and increasing to the right at s and $g-1 / n \rightarrow g$ uniformly so there exist $n^{\prime \prime}$ in N and $x^{\prime}>s$ such that
$g\left(x^{\prime}\right)-1 / n^{\prime \prime}=g(s)$ and $x^{\prime}-s<\delta$. Let $v=\min \left\{1 / n^{\prime}, 1 / n^{\prime \prime}\right\}$ and define $\theta:[0,1] \rightarrow R$ by

$$
\begin{aligned}
\theta(x) & =\min \left\{g(x), g\left(x^{\prime}\right)-v\right\}, & & x \in\left[s, x^{\prime}\right], \\
& =g(x)-v, & & x \in\left(x^{\prime}, t\right], \\
& =g(x), & & x \notin[s, t] .
\end{aligned}
$$

Then θ is nondecreasing and

$$
\begin{aligned}
\int_{0}^{1}|\theta-f| \leqq & \int_{0}^{s}|g-f|+\int_{t}^{1}|g-f|+\int_{s}^{x^{\prime}}|g-f|+v \delta \\
& +\int_{x^{\prime}}^{t}|g-f|-v[(t-s) / 2+\delta]+v[(t-s) / 2-2 \delta] \\
\leqq & \int_{0}^{1}|g-f|-2 v \delta .
\end{aligned}
$$

Thus, θ is a better L_{1}-approximation to f by elements of M than is g, a contradiction. That the other three conditions hold is proven similarly: If (7) (respectively (8), (9)) is false, we may produce a contradiction by increasing (increasing, decreasing) g on an interval of the form [$s, t-\delta$) (respectively, $(s+\delta, 1]$, $[0, t-\delta)$).

Corollary 6. Conditions (8) and (9) in Lemma 5 imply that $m[f>g] \leqq \frac{1}{2}$ and $m[f<g] \leqq \frac{1}{2}$.

We will establish uniqueness of best L_{1}-approximation of f in $b A$ by elements of M and, at the same time, characterize the best approximation by showing that only one continuous function in M satisfies the conclusion of Lemma 5 .

Lemma 7. Let each of g and h satisfy the conclusion of Lemma 5. Then $g=h$.

Proof. Suppose $g>h$. By Corollary 6, there exist y and z in $(0,1)$ such that $f(y) \leqq h(y)$ and $f(z) \geqq g(z)$. Since $f-(g+h) / 2$ is approximately continuous it has the intermediate value property, so there exist $\varepsilon, \delta>0$ and w in $(0,1)$ such that $h(x)<f(w)-\varepsilon<f(w)+\varepsilon<g(x)$ whenever $x \in B(w, \delta)=$ $(w-\delta, w+\delta)$ and, since $m([|f-f(w)|<\varepsilon], B(w, \delta))>0$,

$$
\begin{equation*}
m[g>f>h]>0 . \tag{10}
\end{equation*}
$$

Since $m[f>h] \leqq \frac{1}{2}, m[f<g] \leqq \frac{1}{2}$ and

$$
\Omega=[f>g] \cup[f=g] \cup[g>f>h] \cup[f=h] \cup[f<h],
$$

$m \Omega=m[f>h]+m[f<g]-m[g>f>h]<1, \quad$ a contradiction. Thus $g>h$ on $(0,1)$ is impossible. By symmetry, $g<h$ on $(0,1)$ is also impossible. Suppose $g \neq h$. Then there exists u in $(0,1)$ such that $g(u)=h(u)$ and at least one of the following three cases occurs. Case 1: $u<1$ and there exists $v \leqslant 1$ such that (u, v) is a component of $[g \neq h]$. Case 2: $u<1$ and $g(x) \neq h(x)$ for x in $(u, 1]$. Case 3: $g(x) \neq h(x)$ for x in $[0, u)$. We begin with Case 1 . Suppose without loss of generality that $g>h$ on $I=(u, v)$. Then g must increase to the right at u and h must increase from the left at v; hence, according to Lemma $5, m([f<g] \cap I) \leqslant(v-u) / 2$ and $m([f>h] \cap I) \leqslant(v-u) / 2$. Thus, by an argument similar to that establishing (10), $m([g>f>h] \cap I)>0$. From the decomposition

$$
I=([f \geqslant g] \cap I) \cup([g>f>h] \cap I) \cup([f \leqslant h] \cap I),
$$

we see that $m([f \geqslant g] \cap I)<(v-u) / 2$ or $m([f \leqslant h] \cap I)<(v-u) / 2$. This contradiction completes Case 1. The other cases follow by similar arguments.

We have established the following:

Theorem 8. Let $f \in b A$. Then there exists a unique best L_{1}-approximation f_{1} to f by elements of M.

Our next result shows that the best L_{p}-approximations f_{p} to f converge uniformly to f_{1} as p decreases to one.

Theorem 9. Let $f \in b A$. Then f_{p} converges uniformly to f_{1} as p decreases to one.

Proof. Referring to the proof of Lemma 4, let $f_{1}=f_{1}\left(\left\{q_{n}\right\}\right)$. If $\left\{p_{k}\right\}$ is any sequence with $p_{k} \downarrow 1$, then $\left\{f_{p_{k}}\right\}$ has a subsequence which converges pointwise to f_{1}, the best L_{1}-approximation to f by elements of M. We claim that f_{p} converges uniformly to f_{1} as p decreases to one. Indeed, if this were not true then there would be an $\varepsilon>0$ and sequences $\left\{p_{k}\right\} \subset(1, \infty)$ and $\left\{x_{k}\right\} \subset \Omega$ such that $p_{k} \downarrow 1$ and, for k in N,

$$
\begin{equation*}
\left|f_{p_{k}}\left(x_{k}\right)-f_{1}\left(x_{k}\right)\right| \geqslant \varepsilon . \tag{11}
\end{equation*}
$$

By the above, $\left\{p_{k}\right\}$ has a subsequence $\left\{q_{k}\right\}$ such that $f_{q_{k}} \rightarrow f_{1}$ pointwise and, by the Ascoli-Arzela theorem, $\left\{q_{k}\right\}$ has a subsequence $\left\{r_{k}\right\}$ such that $f_{r_{k}}$ converges uniformly. Clearly $f_{r_{k}} \rightarrow f_{1}$ pointwise so $f_{r_{k}} \rightarrow f_{1}$ uniformly, but this contradicts (11).

For the sake of completeness, we conclude this section with the following:

Proposition 10. Suppose $1 \leqslant p$ and g is a best L_{p}-approximation to f by elements of M. If $y \in \Omega$ and $g(y) \neq f(y)$, then there exists $\delta>0$ such that g is constant on $B(y, \delta)$.

Proof. Suppose $y \in(0,1), g(y) \neq f(y)$, and Proposition 10 is false at y. Then either g increases to the right at y or g increases from the left at y. We will consider both cases for $f(y)-g(y)=3 \varepsilon>0$. For the former case, in accordance with (4), let $Q \in(0,1)$ satisfy $\varepsilon^{p-1} Q>\left(2\|f\|_{\infty}\right)^{p-1}(1-Q)$. Then let $\delta=\delta_{(1+Q) / 2}$ fit (1). Let $x \in(y, y+\delta(1-Q) / 2)$ with $\varepsilon>\eta=$ $f(x)-f(y)>0$. Put

$$
\begin{aligned}
\phi(t) & =g(t)+\eta, & & t \in(y-\delta, y], \\
& =g(x), & & t \in(y, x], \\
& =g(t), & & t \notin(y-\delta, x],
\end{aligned}
$$

and find that ϕ is a better L_{p}-approximation to f. (Note that $(1-(1+Q) / 2)=(1-Q) / 2$ and see the argument following (2).) For the other case, let $x \in(y-\delta(1-Q) / 2, y)$ with $\varepsilon>\eta=f(y)-f(x)>0$. Then, to find a better L_{p}-approximation, put

$$
\begin{aligned}
\phi(t) & =g(t)+\eta, & & t \in(y-\delta, x], \\
& =g(y), & & t \in(x, y], \\
& =g(t), & & t \notin(y-\delta, y] .
\end{aligned}
$$

When y equals zero or one a similar argument applies.

3. Continuity Properties of Best L_{1}-Approximations

Two examples are given here; the first shows that $\left\{f^{n}: n \geqq 1\right\}$ bounded in C, the set of continuous functions on $[0,1]$, and $f^{n} \rightarrow f \in C$ pointwise (i.e., $f^{n} \rightarrow f$ weakly) does not imply that $f_{1}^{n} \rightarrow f_{1}$ weakly, and the second shows that $\left\{f^{n}\right\}$ bounded in C and pointwise convergent on $[0,1]$ does not imply that $\left\{f_{1}^{n}\right\}$ is Cauchy in L_{1}. However, it is shown that if $f^{n} \in b A$, $0 \leqq n$, and $f^{n} \rightarrow f^{0}$ in L_{1}, then $f_{1}^{n} \rightarrow f_{1}^{0}$ in L_{1}, so the map $f \mapsto f_{1}$ is continuous on the elements of $b A$ in L_{1}-norm. The examples show that this result does not extend in certain directions.

Example 1. Put $f^{n}(x)=0, x \in[0,1-2 / n], f^{n}(1-1 / n)=1, f^{n}(1)=0$, and extend f^{n} to be linear on $[1-2 / n, 1-1 / n]$ and $[1-1 / n, 1]$. Then $f^{n} \rightarrow 0$ pointwise and $f_{1}^{n} \rightarrow I_{[1]}$, where $I_{E}(x)=1$ if $x \in E$ and $I_{E}(x)=0$ otherwise.

Example 2. Put $f^{n}(x)=1, x \in\left[0, \frac{1}{2}(1-1 / n)\right], f^{n}(x)=0, x \in\left[\frac{1}{2}, 1\right]$, and extend f^{n} to be linear on $\left[\frac{1}{2}(1-1 / n), \frac{1}{2}\right]$. Put $g^{n}(x)=f^{n}(x), x \in\left[0, \frac{1}{2}\right] \cup$ $\left[\frac{1}{2}(1+4 / n), 1\right], g^{n}(x)=1, x \in\left[\frac{1}{2}(1+1 / n), \frac{1}{2}(1+3 / n)\right]$, and extend g^{n} to be linear on each of $\left[\frac{1}{2}, \frac{1}{2}(1+1 / n)\right],\left[\frac{1}{2}(1+3 / n), \frac{1}{2}(1+4 / n)\right]$. Then $f^{n} \leqq g^{n}$, $g^{n}(0)=f^{n}(0), \int_{0}^{1}\left(g^{n}-f^{n}\right) \rightarrow 0$, and $g_{1}^{n}-f_{1}^{n}=g_{1}^{n} \equiv 1$. Notice that $f^{n} \rightarrow I_{[0,1 / 2)}$ pointwise and $g^{n} \rightarrow I_{[0,1 / 2)}$ pointwise. $I_{[0,1 / 2)}$ is quasi-continuous and has only one point of discontinuity on $[0,1]$, so the following theorem is tight.

Theorem 11. Let $\left\{f^{n}\right\} \subset b A$. Suppose $f \in b A$ with $\int_{0}^{1}\left|f^{n}-f\right| \rightarrow 0$. Then $\int_{0}^{1}\left|f_{1}^{n}-f_{1}\right| \rightarrow 0$.

Proof. We will reduce the problem to a special case in steps. Since a subsequence of $\left\{f^{n}\right\}$ converges a.e. to f, suppose without loss of generality that $f^{n} \rightarrow f$ a.e. We suppose that $\left\|f_{1}^{n}-f_{1}\right\|_{1} \nrightarrow 0$ and show that this supposition leads to a contradiction below.

Our next reduction uses the inequality $\left\|\phi_{1}\right\|_{1} \leqq\|\phi\|_{1}+\left\|\phi-\phi_{1}\right\|_{1} \leqq$ $2\|\phi\|_{1}, \phi \in C$ and the convergence of $\left\|f^{n}\right\|_{1}$ to $\|f\|_{1}$, to assert that $\left\{f_{1}^{n}\right\}$ is uniformly bounded on $[0, x], x<1$; so every subsequence of $\left\{f_{1}^{n}\right\}$ has a pointwise convergent subsequence therefrom. Consequently (without loss of generality) suppose that $f_{1}^{n} \rightarrow g$ pointwise (it is possible that $g(1)=\infty$), where $\left\|g-f_{1}\right\|_{1}>0$. If $\phi \leqq \psi \in b A$, then $\phi_{p} \leqq \psi_{p}$ for $1<p<\infty$ [11], so Theorem 9 implies that $\phi_{1} \leqq \psi_{1}$. Consequently, we consider $\left\{f^{n} \wedge f\right\}$ and $\left\{f^{n} \vee f\right\}: f^{n} \wedge f \rightarrow f$ a.e. (and in L_{1}) and $\left(f^{n} \wedge f\right)_{1} \leqq f_{1}^{n} \wedge f_{1} \rightarrow g \wedge f_{1}$; likewise $f^{n} \vee f \rightarrow f$ and $\left(f^{n} \vee f\right)_{1} \geqq f_{1}^{n} \vee f_{1} \rightarrow g \vee f_{1}$. At least one of $\int_{0}^{1} f_{1}-\left(g \wedge f_{1}\right)$ and $\int_{0}^{1}\left(g \vee f_{1}\right)-f_{1}$ is positive and proofs for the two cases are similar, so we suppose that $f^{n} \geqq f$ with $f_{1}^{n} \rightarrow g \geqq f_{1}$ and $\int_{0}^{1}\left(g-f_{1}\right)>0$.

Now we have $f^{n} \geqq f, f^{n} \rightarrow f$ a.e., $f_{1}^{n} \rightarrow g$ pointwise and $\int_{0}^{1}\left(g-f_{1}\right)>0$. Let $z \in(0,1)$ with $g(z)>f_{1}(z)$. Since g is nondecreasing and f_{1} is continuous, suppose without loss of generality that $g(z+)=g(z)$. Let $x \in[0, z]$ satisfy (i) $g(x+)=g(z)$ and (ii) $g(t)<g(z), t<x$. Put $h(0)=g(0)$ and $h(t)=g(t-), t>0$, so h is lower semicontinuous. Either there is a smallest number $y \in(x, 1]$ with $h(y)=f_{1}(y)$ or there exists $\alpha>0$ with $g(t) \geqq$ $h(t) \geqq f_{1}(t)+\alpha, t \in[x, 1]$. It is easy to modify our proof for the former case to handle the latter, so we suppose that $h(y)=f_{1}(y)$ and $h>f_{1}$ on (x, y). Since h is nondecreasing, y is a point of increase of f_{1} from the left: $f_{1}(t)<$ $f_{1}(y), t<y$. By Lemma 5, $m\left(\left[f>f_{1}\right] \cap[x, y]\right) \leqq(y-x) / 2$. Either $x=0$ or $x>0$. A proof for the case $x=0$ follows easily from the argument given below for the case $x>0$, so we suppose that $x>0$ and verify that the promised contradiction obtains for this special case.

For the case at hand, notice that $f_{1}^{n}(x+\varepsilon) \rightarrow g(x+\varepsilon) \simeq g(x+)=g(z)$ and $f_{1}^{n}(x-\varepsilon) \rightarrow g(x-\varepsilon)<g(z)$. So (without loss of generality) we consider $x_{n} \rightarrow x$ such that $f_{1}^{n}\left(x_{n}\right) \rightarrow g(z)$ and x_{n} is a point of increase of f_{1}^{n} to the right: $f_{1}^{n}(t)>f_{1}^{n}\left(x_{n}\right), t>x_{n}$. Thus, we can lower f_{1}^{n} on $\left[x_{n}, y\right)$ and maintain
its nondecreasing property on [0,1] if we wish, so (cf. Lemma 5 again) $m\left(\left[f^{n} \geqq f_{1}^{n}\right] \cap\left[x_{n}, y\right]\right) \geqq\left(y-x_{n}\right) / 2$. Put $E_{n}=\left[f^{n} \geqq f_{1}^{n}\right] \cap\left[x_{n}, y\right]$, $F_{m}=\bigcup_{n \geqq m} E_{n}$ and $F_{\infty}=\bigcap_{m} F_{m}$. Then $F_{\infty} \subset[x, y]$ and $m\left(F_{\infty}\right) \geqq$ $(y-x) / 2$. Let $F=F_{\infty} \cap\left\{t: f_{(t)}^{n} \rightarrow f(t)\right\} \cap(x, y)$. Then $t \in F$ implies that $f^{n}(t) \rightarrow f(t), f_{1}^{n}(t) \rightarrow g(t)$, and $f^{n}(t) \geqq f_{1}^{n}(t)$ for infinitely many positive integers: $f(t) \geqq g(t)$. Since $h-f_{1}$ is lower semicontinuous and positive on [a,b], there exists $\varepsilon>0$ such that $h-f_{1} \geqq \varepsilon$ on $[a, b]$. Since $f-f_{1}$ is approximately continuous and there exist u and v in $[a, b]$ with $f(u)-f_{1}(u) \geqq \varepsilon$ and $f(v)-f_{1}(v) \leqq 0$, there must be a t in (a, b) such that $f(t)-f_{1}(t)=\varepsilon / 2$. Consequently, $m\left[g>f>f_{1}\right] \geqq m\left[h>f>f_{1}\right]>0$. But now we have $m([f \geqq g] \cap(x, y)) \geqq(y-x) / 2, \quad m\left(\left[g>f>f_{1}\right] \cap\right.$
 establishes our desideratum.

4. An Example

In this section, we reproduce an example from [7] of a bounded function f defined on $[0,2]$ which is continuous on $[0,1)$, continuous on [1,2], approximately continuous at one and does not have the Polya property. A similar function \hat{f} defined on $[0,1]$ is then obtained by putting $\hat{f}(t)=f(2 t): \hat{f} \in b A, \hat{f}$ does not have the Polya property, and $\left\{\hat{f}_{p}: 1<p<\infty\right\}$ is not equicontinuous.
To begin, put $f=5$ on $[1,2]$. We will use a sequence $\left\{u_{n}, v_{n}\right\}$ of pairs of points, $0=u_{1}<v_{1}<u_{2}<\cdots \rightarrow 1$, to define f on [0,1). To help explain, we record some properties that will be satisfied: $\left(v_{n}-u_{n}\right)<4^{-n}\left(1-u_{n}\right)$, $\left(1-u_{n+1}\right)<4^{-n}\left(1-u_{n}\right), \quad f(x)=10 \quad$ on $\quad\left[u_{2 n-1}, v_{2 n-1}\right], f(x)=0 \quad$ on $\left[u_{2 n}, v_{2 n}\right]$, and $f(x) \neq 5$ on less than 4^{-n} percent of $\left[v_{n}, u_{n+1}\right]$.
The following facts will be used repeatedly. If $g \leqslant h$, then (cf. [11]) $g_{p} \leqq h_{p}, 1<p<\infty$, and the map $g \mapsto g_{p}$ is continuous in $L_{p}, 1<p<\infty$.
To start the definition of f on $[0,1)$, choose $v_{1}<4^{-1}$. Put $f=10$ on $\left[0, v_{1}\right]$. Proceeding in steps, we will define f temporarily on ($v_{1}, 1$), modify the temporary definition ϕ of f and then define f on one more piece, $\left[v_{1}, u_{2}\right]$, of $[0,1)$. Put $\phi=5$ on $\left(v_{1}, 1\right)$ and $\phi=f$ elsewhere. Begin to increase p from one. As p increases, $\phi_{p} \equiv c_{p}$ increases from 5 to 7.5 . Choose $p_{1}>1$ with $\phi_{p_{1}}>7$. Put $\phi^{i}=\phi-5 I_{(t, 1)}, v_{1}<t<1$. Choose u_{2} with $\left(1-u_{2}\right)<$ $4^{-1}\left(1-u_{1}\right)$ and $\phi_{p_{1}}^{u_{2}}>7$. Modify $\phi^{u_{2}}$ on less than 4^{-1} percent of $\left[v_{1}, u_{2}\right]$ so that it decreases continuously from 10 to 0 and retains the property $\phi_{p_{1}}^{\alpha_{2}}>7$. Put $f=\phi^{u_{2}}$ on $\left[v_{1}, u_{2}\right]$. Since $\phi^{u_{2}}=0$ on $\left(u_{2}, 1\right), f_{p_{1}}>7$ if $f \geqq 0$ on $\left(u_{2}, 1\right)$.

To continue the definition of f, choose v_{2} with $\left(v_{2}-u_{2}\right)<4^{-2}\left(1-u_{2}\right)$. Put $f=0$ on $\left[u_{2}, v_{2}\right]$. Put $\phi=5$ on $\left(v_{2}, 1\right)$ and $\phi=f$ elsewhere. Begin to increase p from p_{1}. As p increases, ϕ_{p} decreases to 5 on [0,2]. Choose $p_{2}>2 p_{1}$ with $\phi_{p_{2}}<6$. Put $\phi^{t}=\phi+5 I_{(t, 1)}, v_{2}<t<1$. Choose u_{3} with
$\left(1-u_{3}\right)<4^{-2}\left(1-u_{2}\right)$ and $\phi_{p_{2}}^{u_{3}}<6$. Modify $\phi^{u_{3}}$ on less than 4^{-2} percent of [v_{2}, u_{3}] so that it increases continuously from 0 to 10 and retains the property $\phi_{p_{2}}^{u_{3}}<6$. Put $f=\phi^{u_{3}}$ on $\left[v_{2}, u_{3}\right]$. Since $\phi^{u_{3}}=10$ on $\left(u_{3}, 1\right), f_{p_{2}}<6$ if $f \leqq 10$ on $\left(u_{3}, 1\right)$.

One facet of the construction remains to be displayed, so we begin one more step. Choose v_{3} with $\left(v_{3}-u_{3}\right)<4^{-3}\left(1-u_{3}\right)$. Put $f=10$ on $\left[u_{3}, v_{3}\right]$. Put $\phi=5$ on $\left(v_{3}, 1\right)$ and $\phi=f$ elsewhere. Begin to increase p from p_{2}. As p increases, ϕ increases to 7.5 on $\left[u_{3}, 2\right] \supset[1,2]$. Continuing our procedure produces a function f with the promised properties: $f_{p_{2 n-1}}>7$ on [1,2] and $f_{p_{2 n}}<6$ on [1,2].

References

1. A. M. Al-Rashed, Best L_{∞}-approximation in probability spaces, J. Math. Anal. 91 (1983), 1-8.
2. A. M. Al-Rashed and R. B. Darst, Convergence of best best L_{∞}-approximations, Proc. Amer. Math. Soc. 83 (1981), 690-692.
3. A. M. Al-Rashed and R. B. Darst, Best L_{∞}-approximation of measurable vector-valued functions, submitted for publication.
4. A. M. Bruckner, "Differentiation of Real Functions," Lecture Notes in Mathematics, No. 659, Springer-Verlag, Berlin/Heidelberg/New York, 1978.
5. R. B. Darst, Convergence of L_{p}-approximations as $p \rightarrow \infty$, Proc. Amer. Math. Soc. 81 (1981), 433-436.
6. R. B. Darst, Approximation in $L_{p}, 1<p<\infty$, in "Measure Theory and Applications," Proceedings, 1980 Conf., Northern Illinois University (G. A. Golden and R. F. Wheeler, Eds.), DeKalb, Ill., 1981.
7. R. B. Darst and R. Huotari, Monotone approximation on an interval, to appear.
8. R. B. Darst, D. A. Legg, and D. W. Townsend, The Polya algorithm in L_{∞}-approximation, J. Approx. Theory 38 (1983), 209-220.
9. R. B. Darst and S. Sahab, Approximation of continuous and quasi-continuous functions by monotone functions, J. Approx. Theory 38 (1983), 9-27.
10. R. Huotari, Best L_{1}-approximation of quasi continuous functions on [0,1] by nondecreasing functions, J. Approx. Theory, to appear.
11. D. Landers and L. Rogge, On projections and monotony in L_{p}-spaces, Manuscripta Math. 26 (1979), 363-369.
12. I. P. Natanson, "Theory of Functions of a Real Variable," Vol. I, Ungar, New York, 1955.
13. W. Rudin, "Real and Complex Analysis," McGraw-Hill, New York, 1974.
14. T. Shintani and T. Ando, Best approximants in L^{1} space, Z. Wahrsch. Verw. Gebiete 33 (1975), 33-39.
